地质系

地质系

胡万龙(副教授)

作者: 发布者:伏健 责任编辑: 发布时间:2024-06-04 浏览次数:562

»姓名:胡万龙

»系属:地质系

»学位:理学博士

»职称:副教授

»专业:地质学

»导师类别:硕士生导师

»电子邮箱:wanlonghu@126.com;   wanlonghu@upc.edu.cn

»联系电话:

»通讯地址:山东省青岛市黄岛区长江西路66

»概况

研究方向

主要从事岩浆岩岩石学与同位素地球化学方面的研究。研究区域:青藏高原及其邻近地区。研究方向:俯冲带壳-幔相互作用、造山带形成与演化以及大陆地壳生长与演化。

 

教育经历

2016/09–2021/01   中国科学院广州地球化学研究所,同位素地球化学国家重点实验室,博士,矿物学、岩石学、矿床学专业

2013/09–2016/06   兰州大学地质科学与矿产资源学院,硕士,矿物学、岩石学、矿床学专业

2009/09–2013/06   兰州大学地质科学与矿产资源学院,学士,地质学专业

 

工作经历

2024/05–至今    米兰网页版,副教授

2021/02–2024/04   中国科学院广州地球化学研究所,博士后

 

指导研究生

欢迎热爱野外地质工作、对矿物学、岩浆岩岩石学及同位素地球化学等方向感兴趣的同学报考。

 

承担项目

1. 国家自然科学基金委员会,青年科学基金项目,青藏高原中部班公湖-怒江缝合带早白垩世镁铁质岩墙的成因及其动力学意义(42102051202201202312主持.

2. 中国博士后科学基金会,面上资助项目,青藏高原中部侏罗纪高镁安山岩硼同位素组成及其对岩石成因和壳-幔相互作用的制约(2021M693189202107202212主持.

3. 科学技术部,国家专项第二次青藏高原综合科学考察研究任务七高原生长与演化(2019QZKK0700专题二典型地区岩石圈组成、演化与深部过程(2019QZKK07022019–112024–10参加.

4. 国家自然科学基金委员会,重大研究计划-重点支持项目,青藏高原中部Sn波不发育区地幔演化及深部过程(91855215201901202212参加.

5. 国家自然科学基金委员会,面上项目,青藏高原中北部 28-2.3 Ma 岩浆岩中地壳包体及深部地壳组成与热演化(41872065201901202212参加.

6. 广州市科技计划项目,珠江科技新星专题项目,青藏高原深部地壳的热演化与高原隆升(201906010053201904202103参加.

7.国家自然科学基金委员会,联合基金项目-培育项目,东准噶尔北缘石炭纪-早二叠世基性岩-花岗质岩石的成因及其对地壳生长的启示(U1703125201801202012参加.

8. 国家重点研发计划深地资源勘查开采重点专项,中国西部燕山运动及岩浆作用与成矿(2016YFC0600407201607202012参加.

 

获奖情况

1. 202312获得兰州大学校友奖新生力量奖

2. 202011获得中华人民共和国教育部博士研究生国家奖学金

3. 202007获得中国科学院大学三好学生荣誉称号

4. 201601获得兰州大学三好研究生荣誉称号

5. 201212获得兰州大学学生标兵荣誉称号

6. 201203获得兰州大学创新创业行动计划成果奖(三等奖)

 

论文

1. Hu, W.L., Wang, Q., Yang, J.H., Hao, L.L., Wei, G.J., Qi, Y.,   Wang, J., Yang, Z.Y., Sun, P., 2024c. Reworking and maturation of continental   crust in collision zones: Insights from Early Cretaceous compositionally   diverse magmatic rocks in central Tibet. Lithos, 472–473, 107562.

2. Hu, W.L., Wang, Q., Yang, J.H., Wang, J., Qi, Y., Yang, Z.Y.,   Sun, P., 2024b. Petrogenesis of Early Cretaceous andesites and mafic dikes in   central Tibet: Implications for the growth of continental crust in collision   zones. Journal of Asian Earth Sciences, 259, 105898.

3. Hu, W.L., Wang, Q., Tang, G.J., Qi, Y., Wang, J., Yang, Z.Y.,   Sun, P., 2024a. First identification of Early Cretaceous mafic dikes in the   Baingoin area, central Tibet: Implications for crust-mantle interactions and   magmatic flare-up. Geological Society of America Bulletin, 136(1–2), 846–860.

4. Hu, W.L., Wang, Q., Yang, J.H., Hao, L.L., Wang, J., Qi, Y.,   Yang, Z.Y., Sun, P., 2023. Growth of the continental crust induced by slab   rollback in subduction zones: Evidence from Middle Jurassic arc andesites in   central Tibet. Gondwana Research, 117, 8–22.

5. Hu, W.L., Wang, Q., Tang, G.J., Zhang, X.Z., Qi, Y., Wang, J.,   Ma, Y.M., Yang, Z.Y., Sun, P., Hao, L.L., 2022. Late Early Cretaceous   magmatic constraints on the timing of closure of the Bangong–Nujiang Tethyan   Ocean, Central Tibet. Lithos, 416–417, 106648.

6. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Ma, L., Yang, Z.Y.,   Qi, Y., Sun, P., 2021. Petrogenesis of Late Early Cretaceous high-silica   granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos,   402–403, 105788.

7. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang,   Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late   Jurassic diorites, Central Tibet: Implications for petrogenesis and   geodynamic processes. Lithos, 370–371, 105644.

8. Hu, W.L., Wang, Q., Yang, J.H., Zhang, C.F., Tang, G.J., Ma, L.,   Qi, Y., Yang, Z.Y., Sun, P., 2019. Late early Cretaceous peraluminous biotite   granites along the Bangong-Nujiang suture zone, central Tibet: Products   derived by partial melting of metasedimentary rocks? Lithos, 344–345, 147–158.

9. 胡万龙, 贾志磊, 王金荣, 侯克选, 王淑华, 2016. 南祁连化石沟花岗岩年代学, 地球化学特征及其构造意义. 高校地质学报, 22(2), 242–253.

10. 胡万龙, 侯荣娜, 张铖, 王淑华, 马锦龙, 王金荣, 2016. 中祁连西段玄武玢岩地球化学特征及其构造意义. 兰州大学学报. 自然科学版, 52(3), 287–294.

11. 王强, 李五福, 王秉璋, 王涛, 周金胜, 马林, 李玉龙, 袁博武, 王春涛, 王军, 张新远, 刘建栋, 薛尔堃, 胡万龙, 黄彤宇, 李旺超, 2024. 与碱性岩碳酸岩杂岩共生的铌稀土成矿作用——兼论东昆仑大格勒铌稀土矿床中的碱性岩碳酸岩杂岩成因. 大地构造与成矿学, 48(01): 1–37.

12. Qi, Y., Wang, Q., Wei, G.J.,   Zhang, X.Z., Dan, W., Yang, Z.Y., Hao, L.L., Hu, W.L., 2023. Oligocene High-MgO Alkali Basalts in Central Tibet: Implications for Magma–mush   Mixing and Mantle Processes. Journal of Petrology, 65, 1–19.

13. Wang, J., Wang, Q., Ma, L., Hu, W.L., Wang, J., Belousova, E.,   Tang, G.J., 2023. Rapid Recycling of Subducted Sediments in the   Subcontinental Lithospheric Mantle. Journal of Petrology, 64, 1–19.

14. Wang, J., Wang, Q., Sun, P.,   Dan, W., Kerr, A.C., Zhang, Z.P., Zhang, L., Wei, G.J., Dong, H., Hu, W.L., Yang, Z.Y., Zhang, X.Z.,   Qi, Y., 2023. Crustal Growth Identified by High-δ18O Zircon and   Olivine: A Perspective from Ultramafic Arc Cumulates in Southern Tibet.   Journal of Petrology, 64, 1–20.

15. Wang, Z.L., Fan, J.J., Wang, Q.,   Hu, W.L., Wang, J., Ma, Y.M.,   2022. Campanian transformation from post-collisional to intraplate tectonic   regime: Evidence from ferroan granites in the Southern Qiangtang, central   Tibet. Lithos, 408–409, 106565.

16. Qi, Y., Wang, Q., Wyman, D.A.,   Li, Z.X., Dong, H., Ma, T., Chen, F.K., Hu,   W.L., Zhang, X.Z., 2021. Syn-collisional magmatic record of Indian steep   subduction by 50 Ma. Geological Society of America Bulletin, 133 (5-6),   949–962.

17. Wang, Z.L., Fan, J.J., Wang, Q.,   Hu, W.L.,Yang, Z.Y., Wang, J., 2021. Reworking of juvenile crust beneath   the Bangong–Nujiang suture zone: Evidence from Late Cretaceous granite   porphyries in Southern Qiangtang, Central Tibet. Lithos, 390–391, 106097.

18. Yang, Z.Y., Wang, Q., Hao, L.L.,   Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P., Hu, W.L.,2021.   Subduction erosion and crustal material recycling indicated by adakites in   central Tibet. Geology, 49(6), 708–712.

19. Liu, X., Wang, Q., Ma, L., Yang,   Z.Y., Hu, W.L., Ma, Y.M., Wang,   J., Huang, T.Y., 2020. Petrogenesis of Late Jurassic two-mica   granites and associated diorites and syenite porphyries in Guangzhou, SE   China. Lithos, 364–365, 105537.

20. Ma, L., Kerr, A.C., Wang, Q.,   Jiang, Z.Q., Tang, G.J., Yang, J.H., Xia, X.P., Hu, W.L., Yang, Z.Y., Sun, P., 2019. Nature and Evolution of   Crust in Southern Lhasa, Tibet: Transformation from Microcontinent to   Juvenile Terrane. Journal of Geophysical Research: Solid Earth, 124(7),   6452–6474.

21. Ma, Y.M., Wang, Q., Wang, J.,   Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C, Li,   H.Y. Cao, L.W., 2019. Paleomagnetic Constraints on the Origin and   Drift History of the North Qiangtang Terrane in the Late Paleozoic.   Geophysical Research Letters, 46(2), 689–697.

22. Wang, J., Wang, Q., Dan, W.,   Yang, J.H., Yang, Z.Y., Sun, P., Qi Y., Hu,   W.L., 2019. The role of clinopyroxene in amphibole fractionation of arc   magmas: Evidence from mafic intrusive rocks within the Gangdese arc, southern   Tibet. Lithos, 338, 174–188.

23. Ma, L., Kerr, A.C., Wang, Q.,   Jiang, Z.Q., Hu, W.L., 2018. Early   Cretaceous (~140Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet:   Products of crust-mantle interaction during lithospheric extension. Lithos,   300, 212–226.

24. 陈万峰, 郭刚, 苗秀全, 王金荣, 胡万龙, 赵斌斌, 樊立飞, 2016. 新疆卡拉麦里地区早石炭世火山岩地球化学特征及构造意义. 地球科学进展, 31(2), 180–191.