测井系

测井系

韩同城(教授)

作者: 发布者:伏健 责任编辑: 发布时间:2020-04-20 浏览次数:10693

»姓名:韩同城

»系属:测井系 

»学位:博士

»职称:教授

»专业:地质资源与地质工程

»导师类别:博士生导师

»电子邮箱:hantc@upc.edu.cn

»通讯地址:米兰网页版

»概况

研究方向

岩石物理学

岩石与沉积物的声电联合性质

 

教育经历

2007.10-2010.11,英国南安普顿大学,地球物理学,博士

2005.09-2007.09,中国海洋大学,地球探测与信息技术,硕博连读研究生

2001.09-2005.06,中国海洋大学,勘查技术与工程,学士

 

工作经历

2017.05至今,中国石油大学(华东),地球科学与技术学院,教授

2013.10-2017.05,澳大利亚联邦科学与工业研究组织(CSIRO),能源所,研究员

2010.12-2013.09,国家海洋局第一海洋研究所,海洋地质与地球物理,助理研究员

 

学术兼职

Geophysical Prospecting》副主编

《石油勘探与开发》编委

《中国煤炭地质》编委

 

承担项目

山东省杰出青年基金,岩石物理学,2022.01-2024.12

国家自然科学基金面上项目,基于物理模型的裂缝性致密砂岩声电联合性质研究,2022.01-2025.12

国家自然科学基金面上项目,基于声电联合性质的储层砂岩饱和度定量表征研究,2019.01-2022.12

国家青年特聘专家项目科研启动经费,2017.05-2020.05

自主创新科研计划项目,含裂隙砂岩声电联合性质研究,2018.10-2020.12

 

获奖情况

中国地球物理学会傅承义青年科技

山东省人民政府山东省留学人员回国创业奖

 

荣誉称号

国家青年特聘专家

青岛西海岸新区第三批顶尖人才

 

论文(第一和通讯作者)

1.      Han T.*, Yan H., Fu L.-Y., Xu   D., 2022, Effective medium modeling of the joint elastic-electrical   properties of sandstones with partial water saturation, Geophysics, 87(3): MR129-MR137.

2.      Han T.*, Yan H., Fu L.-Y., Li   F., 2022, Applicability of cross-property differential effective medium model   to the joint elastic-electrical properties of reservoir sandstones, Geophysical   Prospecting, 10.1111/1365-2478.13233

3.      Han T.*, Yan H., Li B., Fu L.-Y.,   2022, Pressure dependent joint elastic-electrical properties in   brine-saturated artificial sandstones with aligned penny-shaped cracks – Part   I: Experimental results, Geophysical Journal International, 228: 1071-1082.

4.      Yan   H., Han T.*, Fu L.-Y., Li B., 2022,   Pressure dependent joint elastic-electrical properties in brine-saturated   artificial sandstones with aligned penny-shaped cracks – Part II: Theoretical   modelling, Geophysical Journal International, 228: 1083-1097.

5.      Bao   H., Han T.*, Fu L.-Y., 2022, Dielectric   properties of porous rocks with partially saturated fractures from   finite-difference modeling, Geophysics,10.1190/geo2022-0041.1

6.      Li B., Han T.*,   Fu L.-Y., Yan H., 2022, Pressure effects on the anisotropic electrical   conductivity of artificial porous rocks with aligned fractures, Geophysical   Prospecting, 70: 790-800.

7.      Wang   X., Han T.*, Fu L.-Y., 2022, Anisotropic   elastic properties of montmorillonite with different layer charge densities   and layer charge distributions through molecular dynamic simulation, Frontiers   in Earth Science, 10: 854816.

8.    登辉,   韩同城*, 符力耘, 2022, 背景为各向异性的含裂缝岩石频散和衰减计算方法研究,   地球物理学报,10.6038/cjg2022P0900.

9.      Han T.*, Yu H., Fu L.-Y.,   2021, Correlations between the static and anisotropic dynamic elastic   properties of lacustrine shales under triaxial stress: Examples from the   Ordos Basin, China, Geophysics, 86(4):MR191-MR202.

10.Han T.*, Liu S., Fu L.-Y.,   Yan H., 2021, Understanding how overpressure affects the physical properties   of sandstones, Geophysics, 86(4):MR203-MR210.

11.Han T.*, Yan H., Fu L.-Y., 2021,   A quantitative interpretation of the saturation exponent in Archie’s   equations, Petroleum Science, 18: 444-449.

12.Liu   S., Han T.*, Fu L.-Y., 2021, Laboratory   investigations of acoustic anisotropy in artificial porous rock with aligned   fractures during gas hydrate formation and dissociation, Journal of   Geophysical Research: Solid Earth, 126: e2021JB021678.

13.Liu   S., Han T.*, Fu L.-Y., 2021, Distribution   of gas hydrate in fractured reservoirs: insights from anisotropic seismic   measurements, Science China Earth Sciences, 64(5): 744-752.

14.Xu   D., Han T.*, Fu F.-Y., 2021,Seismic   dispersion and attenuation in layered porous rocks with fractures of varying   orientations, Geophysical Prospecting, 69: 220-235.

15.Xu   D., Han T.*, Fu F.-Y., 2021,Frequency-dependent   seismic properties in layered and fractured rocks with partial saturation,   Geophysical Prospecting, 69: 1716-1732.

16.任舒波, 韩同城*,符力耘, 颜韩, 2021, 压力对含裂缝岩石各向异性速度的影响研究, 地球物理学报, 64(7): 2504-2514.

17.包宏帅, 韩同城*, 符力耘, 2021, 基于二维图像的数字岩心电导率计算方法研究, 地球物理学报, 64(5): 1733-1744.

18.Han T.*, Yan H., Xu D., Fu L.-Y.,   2020, Theoretical correlations between the elastic and electrical properties   in layered porous rocks with cracks of varying orientations, Earth-Science   Reviews, 211: 103420.

19.Han T.*, Gurevich B., Fu L.-Y.,   Qi Q., Wei J., Chen X., 2020, Combined effects of pressure and water   saturation on the seismic anisotropy in artificial porous sandstone with   aligned fractures, Journal of Geophysical Research: Solid Earth, 125:   e2019JB019091.

20.Han T.*, Liu S., Xu D., Fu L.-Y.,   2020, Pressure-dependent cross-property relationships between elastic and   electrical properties of partially saturated porous sandstones, Geophysics, 85:   MR107-MR115.

21.Han T.*, Wei Z., Li F., 2020,   How the effective pore and grain shapes are correlated in Berea sandstones:   Implications for joint elastic-electrical modeling, Geophysics, 85:   MR147-MR154.

22.Han T.*, Wei Z., Fu L.-Y.,   2020, Cementation exponent as a geometric factor for the elastic properties   of granular rocks, Geophysics, 85: MR341-MR349.

23.Yan   H., Han T.*, Fu L.-Y., 2020,   Theoretical models for the effective electrical conductivity of transversely   isotropic rocks with inclined penny-shaped cracks, Journal of Geophysical   Research: Solid Earth, 125: e2020JB020371.

24.Xu   D., Han T.*, Liu S., Fu F.-Y.,   2020,Effects of randomly orienting penny-shaped cracks on   the elastic properties of transversely isotropic rocks, Geophysics, 85:   MR325-MR340.

25.Liu   S., Han T.*, Hu G., Bu Q., 2020,   Dielectric behaviors of marine sediments for reliable estimation of gas   hydrate saturation based on numerical simulation, Journal of Natural Gas   Science and Engineering, 73: 103065.

26.任舒波,韩同城*,符力耘,2020,不同压力下部分饱和砂岩纵波衰减的理论及实验研究,地球物理学报,63: 2722-2736.

27.李博,韩同城*,符力耘,2020,基于数字岩芯的含裂隙储层砂岩介电性质研究,地球物理学报,63:   4578-4591.

28.Han T.*, Xu D., Fu L.-Y., Li   F., 2019, The role of spheroidal inclusions on the electrical anisotropy of   transversely isotropic rocks, Geophysical Journal International, 218:   508-518.

29.Han T.*, Yang S., 2019,   Dielectric properties of fractured carbonate rocks from finite-difference   modeling, Geophysics, 84(1): M37-M44.

30.Han T.*, Josh M., Liu H.,   2019, Effects of aligned fractures on the dielectric properties of synthetic porous   sandstones, Journal of Petroleum Science and Engineering, 172: 436-442.

31.Guo J.*, Han T.*, Fu L.Y., Xu D., Fang X., 2019, Effective elastic   properties of rocks with transversely isotropic background permeated by   aligned penny-shaped cracks, Journal of Geophysical Research:   Solid Earth, 124: 2018JB016412.

32.Han T.*, Beloborodov R.,   Pervukhina M., Josh M., Cui Y., Zhi P., 2018, Theoretical modeling   of dielectric properties of artificial shales, Geofluids: 1-12.

33.Han T.*, 2018, An effective   medium approach to modelling the pressure dependent electrical properties of   porous rocks, Geophysical Journal International, 214: 70-78.

34.Han T.*, 2018, Joint   elastic-electrical properties of artificial porous sandstone with aligned   fractures, Geophysical Research Letters, 45: 3051-3058.

35.Han T.*, Liu B., Sun J.,   2018, Validating the theoretical model for squirt-flow attenuation in fluid   saturated porous rocks based on the dual porosity concept, Geophysical   Journal International, 217: 1800-1807.

36.Han T.*, Yang Y.S., 2018, Numerical   and theoretical simulations of the dielectric properties of porous rocks,   Journal of Applied Geophysics, 159: 186-192.

37.Yu   H.*, Wang Z., Rezaee R., Zhang Y., Han   T.*, et al., 2018, Porosity estimation in kerogen-bearing shale gas   reservoirs, Journal of Natural Gas Science and Engineering, 52: 575-581.

38.Han T., Pervukhina M.,   Clennell M.B., Dewhurst D.N., 2017, Model based pore pressure prediction in   shales: An example from the Gulf of Mexico, North America, Geophysics, 82:   M37-M42.

39.Han T.*, Clennell M.B.,   Pervukhina M., Josh M., 2016, Saturation effects on the joint   elastic-dielectric properties of carbonates, Journal of Applied Geophysics,   129: 36-40.

40.Han T., Clennell M.B., Cheng   A.C.H., Pervukhina M., 2016, Are self-consistent models capable of jointly   modeling elastic velocity and electrical conductivity of reservoir   sandstones?, Geophysics, 81: D377-D382.

41.Han T.*, Gurevich B.,   Pervukhina M., Clennell M.B., 2016, Linking the pressure dependency of   elastic and electrical properties of porous rocks by a dual porosity model,   Geophysical Journal International, 205: 378-388.

42.Han T.*, 2016, A simple way   to model the pressure dependency of rock velocity, Tectonophysics, 675: 1-6.

43.Han T.*, Best A.I., Sothcott   J., North L.J., MacGregor L.M., 2015, Relationships among low frequency (2   Hz) electrical resistivity, porosity, clay content and permeability in   reservoir sandstones, Journal of Applied Geophysics, 112: 279-289.

44.Han T.*, Clennell M.B.,   Pervukhina M., 2015, Modelling the low-frequency electrical properties of   pyrite-bearing reservoir sandstones, Marine and Petroleum Geology, 68:   341-351.

45.Han T., Clennell M.B., Josh   M., Pervukhina M., 2015, Determination of effective grain geometry for   electrical modeling of sedimentary rocks, Geophysics, 80: D319-D327.

46.Han T.*, Liu B., Kan G.,   Meng X., Ding Z., 2012, Joint elastic-electrical properties of sediments in   the Yellow Sea, Science China Earth Sciences, 55: 143-148.

47.Han T.*, Best A.I., Sothcott   J., MacGregor L.M., 2011, Pressure effects on the joint elastic-electrical   properties of reservoir sandstones, Geophysical Prospecting, 59: 506-517.

48.Han T.*, Best A.I., Sothcott   J., MacGregor L.M., 2011, Joint elastic-electrical properties of reservoir   sandstones and their relationships with petrophysical parameters, Geophysical   Prospecting, 59: 518-535.

49.Han T.*, Best A.I., MacGregor   L.M., Sothcott J., Minshull T.A., 2011, Joint elastic-electrical effective   medium models of reservoir sandstones, Geophysical Prospecting, 59: 777-786.